Optical Detection of Early Damage in Retinal Ganglion Cells in a Mouse Model of Partial Optic Nerve Crush Injury

نویسندگان

  • Ji Yi
  • Zhen Puyang
  • Liang Feng
  • Lian Duan
  • Peiji Liang
  • Vadim Backman
  • Xiaorong Liu
  • Hao F. Zhang
چکیده

Purpose Elastic light backscattering spectroscopy (ELBS) has exquisite sensitivity to the ultrastructural properties of tissue and thus has been applied to detect various diseases associated with ultrastructural alterations in their early stages. This study aims to test whether ELBS can detect early damage in retinal ganglion cells (RGCs). Methods We used a mouse model of partial optic nerve crush (pONC) to induce rapid RGC death. We confirmed RGC loss by axon counting and characterized the changes in retinal morphology by optical coherence tomography (OCT) and in retinal function by full-field electroretinogram (ERG), respectively. To quantify the ultrastructural properties, elastic backscattering spectroscopic analysis was implemented in the wavelength-dependent images recorded by reflectance confocal microscopy. Results At 3 days post-pONC injury, no significant change was found in the thickness of the RGC layer or in the mean amplitude of the oscillatory potentials measured by OCT and ERG, respectively; however, we did observe a significantly decreased number of axons compared with the controls. At 3 days post-pONC, we used ELBS to calculate the ultrastructural marker (D), the shape factor quantifying the shape of the local mass density correlation functions. It was significantly reduced in the crushed eyes compared with the controls, indicating the ultrastructural fragmentation in the crushed eyes. Conclusions Elastic light backscattering spectroscopy detected ultrastructural neuronal damage in RGCs following the pONC injury when OCT and ERG tests appeared normal. Our study suggests a potential clinical method for detecting early neuronal damage prior to anatomical alterations in the nerve fiber and ganglion cell layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

P129: Use of Stem Cells to Regenerate Degenerative Optic Nerve

Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...

متن کامل

An optic nerve crush injury murine model to study retinal ganglion cell survival.

Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal...

متن کامل

Changes of retinal glutamate transporter GLT-1 mRNA levels following optic nerve damage.

PURPOSE Under physiological conditions, levels of the excitatory neurotransmitter glutamate within the retina are regulated by retinal glutamate transporters to prevent toxic accumulation. Alterations in this glutamate buffering have been implicated in retinal ganglion cell (RGC) death. We quantified the changes in the level of glutamate transporter mRNA in a model of acute rat optic nerve inju...

متن کامل

Diffusion tensor imaging detects retinal ganglion cell axon damage in the mouse model of optic nerve crush.

PURPOSE Diffusion tensor imaging (DTI) measures the random motion of water molecules reflecting central nervous system tissue integrity and pathology. Glaucoma damages retinal ganglion cells (RGCs) and their axons. The authors hypothesized that DTI-derived axonal and myelin injury biomarkers may be used to detect early axonal damage and may be correlated with RGC loss in the mouse model of opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2016